Stability criteria for parabolic type partial difference equations
نویسندگان
چکیده
منابع مشابه
Finite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملStability and Convergence of Difference Approximations to Pseudo-Parabolic Partial Differential Equations
Two difference approximations to the solution of a pseudo-parabolic problem are constructed and shown by means of stability analysis to converge in the "discrete" £2 norm. A relation between parabolic and pseudo-parabolic difference schemes is discussed, and the stability of difference approximations to backward time parabolic and pseudo-parabolic problems is also considered.
متن کاملfor parabolic partial differential equations
number of iterationsrequired to meet the convergencecriterion. the converged solutions from the previous step. This significantly reduces the interfacial boundaries, the initial estimates for the interfacial flux is given from scheme. Outside of the first time step where zero initial flux is assumed on all between subdomains are satisfied using a Schwarz Neumann-Neumam iteration method which is...
متن کاملOn Difference Schemes for Hyperbolic-Parabolic Equations
The nonlocal boundary value problem for a hyperbolic-parabolic equation in a Hilbert space H is considered. The difference schemes approximately solving this boundary value problem are presented. The stability estimates for the solution of these difference schemes are established. In applications, the stability estimates for the solutions of the difference schemes of the mixed type boundary val...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1996
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(96)00058-1